
January 2002 Workshop on ACT-R Models of Human-System Interaction -1-

Modeling Crew Interaction

Robert W. Holt, Ronald Chong, Wolfgang Schoppek, Jeffrey T. Hansberger, &
Deborah A. Boehm-Davis,
George Mason University

Fairfax, VA

The Federal Aviation Administration (FAA),
National Aeronautics and Space Administration
(NASA), National Transportation Safety Board
(NTSB), airline pilots, airline management, and
researchers all have raised questions about the
impact of automation in our airliners. Although
some researchers have suggested that automation
reduces cockpit workload (Wiener, 1985; Sherman,
Helmreich, & Merritt, 1997), others have suggested
that automation can increase workload and
frustration (Wiener, 1988, 1989).

Although automation was introduced in part to
reduce error in the aviation system, errors have
continued. Indeed, automation has introduced new
errors into the cockpit. This may be a result of
automation changing the roles, responsibilities, and
activities of the pilots (e.g., from psychomotor
flying skills to monitoring and delegating tasks to
the automation), which introduces new errors and
new types of errors into the system.

One approach to studying error has been to
classify or functionally group automation-related
errors (e.g., Sarter and Woods, 1995; Wiener,
1989). However, this approach does not allow
researchers to pinpoint the causes of errors. Further,
this approach does not describe the process of pilot-
automation interaction that results in the errors.
This makes it impossible to know how to design
interventions such as training or the redesign of
instruments, displays, or software.

An alternative to the taxonomic approach is
cognitive modeling. Detailed cognitive modeling
of the processes involved in human-automation
systems should give a more complete and
systematic picture of automation errors, their
detection and possible mitigation. In this project,
we have built two computational models – one to
represent single pilot performance and one to
represent crew performance. Both models have
been built from prior cognitive task analyses
coupled with empirical performance data. To make
the task analyses tractable, we needed to focus on a
particular aspect of flight. Given the large number

of errors that occur during changes in vertical
position, we chose to focus on the climb and
descent phases. Cognitive task analyses were then
developed using Natural-language GOMS (Goals,
Operators, Methods, and Selection Rules),
developed by Kieras (1997). NGOMSL is based on
Card, Moran and Newell's (1983) conceptualization
of task decomposition into a hierarchical set of
goals, which can be operated on using a set of
methods and selection rules. The technique allowed
us to specify the alternative set(s) of actions that
must be carried out in order to achieve a set goal
(e.g., the activities that a pilot must carry out to
bring a plane down from one specific altitude to
another).

For the single pilot model, we explored the
tasks of making altitude, heading, or airspeed
changes based on Air Traffic Control commands
during realistic flight scenarios during the climb or
descent phases of flight. The task analysis thus
specifically focused on the cognitive demands on
the pilot responsible for interacting with the
automation during these phases of flight.

For the crew model, we explored the phase of
flight from the top of descent to the final approach
fix. For the pilot flying, the tasks include the flying
tasks in the original single pilot model plus
auxiliary tasks such as communicating with ATC.
For the pilot not flying, the tasks included
programming the flight management system for the
descent, executing other flight tasks (e.g.,
checklists, setting a radio frequency or getting an
approach plate out), and communications with the
pilot flying, the flight attendants, and passengers.

The task analysis included relevant details of
the automation interface such as the panels used for
input and output displays, as well as relevant
cognitive processes such as perception,
understanding, memory recall, evaluation, and
decision-making. The task analyses were then
converted to computational cognitive models using
a hybrid production rule architecture (ACT-R;
Anderson, 1998).

January 2002 Workshop on ACT-R Models of Human-System Interaction -2-

To facilitate this modeling, ACT-R 4.0 was
given a set of productions to process the methods,
steps, and goals (ACT-GOMS) coming from the
task analysis. Task goals, methods, steps, and
operators are represented as different types of ACT-
R memory chunks. Selection rules are represented
as sets of ACT-R productions. Effectively, ACT-
GOMS functions as a “meta-architecture” that
alters how ACT-R 4.0 functions.

The ACT-GOMS meta-architecture controls a
goal stack constrained to only 3 levels. These
levels corresponded to a basic goal, a main goal for
the execution of each method, and step-specific
goals for the execution of each operator. During
execution, incomplete main goals are rehearsed and
popped off the goal stack, allowing goals to decay.
The retrieval of goals is competitive and based on
relative levels of activation. Similarly, the retrieval
of each step is competitive and based on relative
levels of activation.

Having computational models for both the
single pilot and the crew allow simulation of task
execution and a detailed trace of the expected
output. Both pilot and crew models processes
provide precise predictions about the timing and
sequencing of overt behaviors such as keypresses
(e.g., entries into the Flight Management
Computer) or communication with other pilots.
Preliminary evaluation indicates that both
quantitative results such as time required for task
completion and qualitative results such as errors of
omission and commission in the procedures are
produced under certain conditions

These models will be further evaluated by
comparing the trace output to detailed protocols
collected from either single pilots or crews
interacting with automated aircraft systems. After
refining the models, we hope to develop and test
procedures designed to avoid or catch the
occurrence of focal automation errors. Proposed
interventions can be evaluated by first
implementing the interventions in the
computational model and tracking the simulated
results. To the extent the models accurately
simulate pilots and crews, the evaluation of the
interventions in the model should predict the effects
of interventions in operational conditions.

Acknowledgements

This research was supported by grant NAG 2-
1289 from NASA and 99-G-010 from FAA.

References
Anderson, J.R. & Lebiere, C. (1998). The

Atomic components of thought. Mahwah, NJ.:
Erlbaum.

Card, S.K., Moran, T.P., & Newell, A. (1983).
The psychology of human-computer interaction.
Hillsdale, NJ:Lawrence Erlbaum Associates.

Kieras, D.E. (1997). A guide to GOMS model
usability evaluation using NGOMSL. In M.
Helander & T. Landauer (Eds.), The handbook of
human-computer interaction. (Second Edition),
733-766. New York: Elsevier.

Sarter, N. & Woods, D. (1995). “From tool to
agent”: The evolution of (Cockpit) automation and
its impact on human-machine coordination.
Proceedings of the Human Factors and
Ergonomics Society 39 th Annual Meeting (Vol 1, pp
79-83). San Diego, CA: Human Factors and
Ergonomics Society.

Sherman, P.J., Helmreich, R.L. & Ashleight,
C.M. (1997). National culture and flight deck
automation: Resutls of a multinational survey.
International Journal of Aviation Psychology, 7 (4),
311-329.

Wiener, E. L. (1989). Human factors of
advanced technology (“Glass Cockpit”) transport
aircraft. NASA Contract Report No. 177528.
Moffett Field, CA: NASA Ames Research Center.

Wiener, E. L. (1988). Cockpit automation. In
E. L. Wiener, D. C. Nagel (Eds.), Human factors in
aviation (pp. 433-461). San Diego, CA: Academic
Press.

Wiener, E. L. (1985). Beyond the sterile
cockpit. Human Factors, 27 (1), 75-90.

January 2002 Workshop on ACT-R Models of Human-System Interaction -3-

Issues Raised by Our Research

Communication

How do we simulate interpersonal communication? How is communication interpreted and
transformed into executable elements in ACT-R? (from R. Holt & R. Chong)

“Goal death”

The issue here is how to keep the oldest goals available from decaying below threshold?
When the model is involved in an extensive list of sub goals for methods and steps, the
older goals can decay to a below-threshold value. Because of the way in which the ACT-R
architecture retrieves the most active chunks on the LHS, we cannot compose a set of
productions that would find the weakest chunks and rehearse them (that is, we want to
select the WEAKEST goal that is currently ABOVE threshold). (from R. Holt & R. Chong)

Shifting of S jis
In general, ACT-R 4.0's AL mechanism produces results (i.e. sjis) that shift drastically
during a long simulation run. For example in two structurally identical situations it would
predict sji=4.2 when encountered early in the run, and sji=-0.5 when encountered late in
the run. Most of my changes were targeted at reducing these shifts. (from W. Schoppek)

Structuring the Representation of Situational Knowledge

ACT-R doesn't really classify situations. Real experts probably have lots of schemas for
classifying situations that cannot be represented by that simple r-state chunk-type. My
understanding of expert classification is that in the first place a few features of the
situation are stored in WM (not prematurely bound to slots of some chunk-type), then,
based on the given features, a schema is selected, and eventually the slots of the schema
are bound to the features.
This process is hard to simulate in ACT-R for you are forced to use fixed chunk-types with
fixed slots even if you don't know yet what's up. With all the buffers in ACT-R 5.0 it should
be possible to add another buffer representing an unstructured collection of items in WM or
run the goal buffer in free mode or schema mode (note that I view chunk-types as schema).
I often wished to be able to write something like what follows: (from W. Schoppek)
 (p free-mode
 =wm>
 contains
 =x isa altitude
 =y isa vertical-speed
 =z isa alarm
 ==>
 ...
)

instead of:
 (p schema-mode
 =wm>
 isa where-should-i-know-in-advance-type
 potentially-unknown-slot-1 =x
 potentially-unknown-slot-2 =y
 potentially-unknown-slot-3 =z
 ==>
 ...
)

